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ABSTRACT

A class of completely unitary multiparticle models is studied.
This class is defined by an effective Hamiltonian-which allows direct
transitions only between two and n(z2) particle states. The non-zero
matrix elements however ar‘e completely arbitrary. .Unitarity-constré.ined
elastic and produciion amplitudes can bé solved exactly and expressed in
simple closed forms. If turns out that the absorpt;'.on functions for thel
real part of the elastic amplitude, for the imaginary part, and for the
production amplitﬁdes are all differeﬁt. Moreover, alternate bléck and
transparent zones of ir_lteraction may develop if thel'interaction strength

is sufficiently strong.
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1, INTRO2DUCTION

A striking feature of high energy reactions is. the cénstancy or the
slight rise of total cross section over a wide energy range, a range over
which the individual partial cross sections undergo much greater
vaﬁatidns. This conspiracy to build up a constant or nearly constant
total cross section suggests that unitarity constraints are at work.

It is therefore important to understand the nature of these constraints.

The consequences of the unitarity_ relation having two particles in
and two particles out (hereafter called elasi;ic unitarity} are well known.
It can be used to prove the Froissart bou_ndi or to test various multi-
particle models. 2,3 It places a bognd in the elastic amplitude at each
impact parameter.

In contrast, the consequences of unitarity on production amplitudes
are not much known. To the extent that production cross sectioné are
bounded by the total cross section, which through elastic unitarity
is related to the elastic amplitude, production amplitudes are already
somewhat restricted by elastic unitarity above. Therefore, if the Born
amplitude is too large, it must be absorbed in order not to violate this
bound. But the exact manner how the absorption should be done is not
clear, and there are 'many different ad hoc ways of doing it.

To make further progress in this direction, presumably we shot;id go

beyond clastic unitarity to study the complete unitarity requirements. A

completely general study of these is very difficult, so one has to resort
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to simple models in order to make some headway. There are already
several models in the 1ii:eratm-;-:‘4 \w'rhere complete unitarity is taken into
account.

The class of models we study here is defined by a real effective Hamilton-
ian with direct transit.ions only between two and n (= 2) particle states. This
presumably lacks crossing symmetry but at high energy crossing symmetry
in the Hamiltonian may not be all that important. The main advantage of -
this class of models is the wide range of freedom it allows. The effective
Hamiltonian, subject to the above restrictior'is, is otherwise completely
arbitréry. Since only 2- to -n (nz2) amplitudes can be measured
experimentally, and since all 2- to -n matrix elemgnts of the effective.
Hamiltonian are r:xrbit:rary,5 there are presumably enough parameters ';o
mimic every concgivable experimental amplitude. Furthermore, this
class of models is exactly soluble and the unitarity-constrained amplitude
can be expressed in simple closed forms. "’ |

Mathematical solutions of the unitary amplitudes and associated
cross sections are given in Section 2, while discussions. of the results

are postponed to Section 3.

2. SCATTERING AMPLITUDES AND CROSS SECTIONS
: Let%be related to the S-matrix by S = exp(iff). ﬂ is hermitian if
Sis upitary. We consider in th_is paper a c-:la.ss of models in whichjc is
a real and symmetric matrix with non-zero (but arbitrary‘) matrix elements

only between 2- and n-(22) particle states. Spin i$ ignored throughout.
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The normalizations adopted are as follows. The n-particle states

Ikk

(ot kn> with momenta ki are normalized so that the unit operator

L= 2 [ 1 lnd AT R kol %
d,f'n-.-. N_l( -ﬁ-_dL) | (2)

> H
a1 (Y2 K |
whereN is unity if all the n-particles are distinct but is otherwise a

product of factorials of the number of identical particles. Appropriate
summations over hidden indices to ensure a ¢omp1eteness relation in

{1) is understood. The T-matrix is normalized so that

(kl" kn\s l ?l" rm> = < hl“ kw‘ﬂ"’ L(ZF)‘-S“(jZ:»kj‘gP{)T'RQB)

The n-particle cross section is then

o’h-.-(zs)-'Jl( k,-.};aniP,F,)lsz[’“(k). , (4)

if s is the c. m, energy squared and if the phase space is

dfulk)= AT, (Zﬂ)‘}ﬁl'(ék;-r,-r,)_ e

Similar to (3}; we take out an energy-momentum conservation factor

fmm% and define H by

Chebal UL > = G054 ( 3 koo, -p,) CRekalHIRD,D

(6)

W ith the help of the operator
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R= 3 (> APt Rk | ™

the T-matrix is given in terms of H by

TeReT + i ImT o , ®
- 1
Re7= 5 (HRITH ()
Ao (24411
24+

1,7 5 et H e
4o (24+2)! -

We express the matrix elements of H by their impact-parameter

' (9)

(10)

representations. Because of transverse momentum conservation, a
matrix element connecting an n-particle state depends only on n-1
indepehdent transverse momenta E’i’ and hence n-~1 impact parameters
_Ei . If we denote the scaled longitudina_l momentum Zkf/\/'s’by X 5 then

the most general real matrix element of H can be written in the form

h.l -

<k--kntHl?m Jf{b‘,“s)ﬂcxr(ikdbj)&b R

* - E C
»
Jcﬂv(bhx'hs) = f» (-bhxiss) » (12)
if the initial transverse momenta are zero. If not, the corresponding

element at high energy can be obtained from (11) by a slight rotation to

— .

 yield

Lk ka| HIB T D = J f (bl,i.,,s)ﬁ:lc#r {kjv-le’; ). b}) i, (13)
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To facilitate computation cf the scattering amplitudes, let us divide
H into two parts, H = H'.+ Hz, where HZ has only the 2-to-2 matrix
element and II“ has oniy matrix elements connecting 2 to m(>2) particle
states. If the initial state has two particles, then it is connected through

the operator
k! / 4=l P
(i) = (HR) H | (14)
only to m-(2-) particle final states if 1 is odd {(even). From (7) and (13),

we obtain the matrix element of h“(2) to be "

(11%;' i“-’-(Z) I Pl Fz. > = % C 1!12.‘ Hll kl“ kmvd‘rm(h)< k."kmlH"Par;>
[l D@t

(45)
where p1 is assumed to be zero and where

Wb s) = Z '-° (3,5 | ) (16)

2 - 2, M . ml
WA lb,s) = (z.s)lj 5 (b -g_-l 2, b.-,)l)‘m[b,.i,.s)lz(glllak) d-f,f(h)

(17)
The expression dpin(k) sté;xds far the longitudinal part of the phase-space
factor dpm(k):
m J.h"
daw= (1 28 ) Ga's (2 ki-en))s (2 K-0017).

(18)
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The slight dependence of k(.l) on —Ei has been ignored in the computation of
(15), an approximation which is certainty valid at large s if X, is not
too small.
Similarly, one can compute various matrix elements of h”(22) for
a general { with the help of the formula
£k |

(2925

(19)

dp,lk) =

The result is

YN A :

(c;.z;l[{(zmmv = 15‘5'%?(&%;3) o ()b, o

(44 W GEIH, R h O Ha - By R (2l g, > =

= zs_J eﬁf(;‘i..g)wutf,s) 9"'(3.5) £y ’ (féi)

where

v By = Jt,_('C,S)lzs_ '

4 . ‘
L= L4 . @2
v2i :
With the help of these formulas, we may now calculate the matrix elements

of

RN &
htsy 2 (HR) H @3
First we consider the elastic scattering amplitude. If we expand H into
a sum of H” and H2 in the computation of <qiq2 [ h{i) ! p1p2> , then

—
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because of the nature of h” (i) mentioned previously, we are allowed
to have an even {odd) number of H2 if i is even (odd). For i even,

1=2£Z, the number of ways we can have 2m H., inserted into £ -m

2
L+ . .
pairs of H? is ( ernn) For iodd, i = 22+1, the number of ways to

. , L . f1+m+1 .
have 2m+41 HZ inserted into £ -m pairs of H lS( om+1 ) . With 1;ht=T

help of (9), (10) and (21), we can now write down the elastic scattering

amplitude
- R . Tl
Tn_.“(%.%lelﬂrz> = Tzz""‘ 22 ' (24)

to be

o0
f =72 ¢ ol h(2ts) N
zz 2:0 %‘tzl (2&‘[‘2)! ’ Pl rz > -

»

im

a I N o l-“ L
= zsj e b A,.!,{ 1+ 5 L0 2 (l‘m )wzu‘"){t,s)vm(i;

Ieo (20)1 meo

(25)

R_2 ot |
e f e

. -»
= zsj e "".L’L{ T a5 (Lmﬂ)wzu-m) 2m+!
’ | m=o

(B,5) v

(26)

,sJ}
 J

(b.s)
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Similarly we can calculate the production amplitudes

= R, ‘
Toa = (R Rl TIBL Y = T 40 T2 (27)
- by using (11). The result is

- h(zt-n)(l)
Tos = 7- Lk, | e [f Py =

Z(k Rl H' 19,8, 5 A, tp(ﬁ,l "‘ﬁf;’,’ e =

;, &k - (e ,
=j(g,u,w f)f.,twg,»..nz, o (42) 850 47 5,

(28)

: Z(k R h(z.(.n)(-n _
-r;‘ =0 ‘ (z£+2“ Pa 1->

= :Z.. (R~ Rm| H' 1.9 d,r‘(%) 4, 3 ’ had41) () TR ;

(24+2)!

m-l h . Limey N 2(6m), 2me
3 a § , (b RT (-l) (
J(Lu e )f,. S)E.um),mi_, zm)w (Bsv (3

(29)

with

(30)
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The double sums over m and £ in Eqgs. (25), (26), (28) and (29) can
be evaluated. We shall explain in detail how this is done for {25), and

merely write down the results for the others. The double sum

0d L - )
Fa3 @ 5 (Lm) wu{ m) 2

o (zL)! meo \ 2m (31)
can be evaluated by noticing that
, A} = bz 0
L=ze (ZL)I .
Adopting the representation
_(:.Q_ wz'z = ___.'___. Pk 2L d _
(z0)! Wiy, _w t, (32)

where ¢ is a circle enclosing the origin with a large enough radius to
ensure convergence of the infinite sums below, Eq. (31) can be written

in the form

(33)
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~{Z2-
where ‘ -
L 4 .
4= —;_-a y, (_‘:“.)1}'/“"‘ (v " |
‘a 2 A=o e E '\ om A ) . (34

to give
?(?.)‘-‘-‘f l(ﬂ):’-?’[(l V2 f’+ {. V2 b
p=0 2\ t t ( - 'Z,-t) ]
= -} [(21-\?-2-;0’)" + (2+ vz_m‘)'-'
| T 3m)

Finally, F may be obtained by substituting (35) into (33) and evaluating .

the integral by residue calculas., The result is
(36)

F.:-(N*us DJ+ +N_Cﬂw-)/(h’4'fw—)

where
{(37)

' 1
A
) 1 ‘
W, = [ w +{ V) ] t Yz .
Combining (25) and (36). We finally get

S ‘i‘{:“". L i (- W, (F,5) e 3, {B,5) + 1) (D3 s (B )
' w.;(t,.ﬂi‘ Q__[c,s) } .

I

T, 225 | 2

(38)
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This technique may be applied to other sums, and we obtain in this

way
T8 S 3,0 b W, (5,9) sin 4 (T,5) - WD 5) sima(Ds)
= 0,(b,s) + w_(Pe) ’
- (39)
A '
R ol iky-by C o SinW @s) + Sin W AT,s)
T = (T 2 2977 ) £, 0 _,
=t W Bt Oldsy
(40)
- . .
- . &
J (T &, ah’ I) §ul sy B g sy
: Wiga+a g 7
(s

where B is given by (30). The real and imaginary parts of these
amplitudes are so simply related that we can just as easily write the

complex amplitudes out explicitly. They are

-

ok 4 W,(Be) in
Tia = 25t S é?’"l’ Lb { - als)e | Wb e a2 S
2%
' L W (Bs)+ w,n‘.',n ,
(42)
- - m LE , l Et.w.,lﬁ.s) ;*‘E.U_(as')
Tnz' - A S( T\' & L € ) fm(tz.zhs) . -
5” W (B4)+ W-(Bs)

(43)
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From (4), (17), (38)-(43), .we can calculate the production cross
section am(m> 2}, the total inelastic cross-section o, the total cross

section O and the elastic cross section Oy The result is

W (D)
2[ 0 (6,5)+ v B9k ]

o—;n-_-j £b { - e [2 (iga +v‘tr,s>/4)&]j

(44)

| 00 2 .
g '-'--Z G.m = ‘f‘b N,U:J) - "t ’Tg
| j 2[ g v‘(c.mJ{’ w2t '”/"hj

?

(45)

¢ e 7 J’ i { [~ @59y (fs) + B.(L3) w w.(Ds) }
W (B.s) + @.1hs) .
' (46)

6 =6_,-06 S ' | (47)

We know that the elastic amplitude is almost purely imaginary at high
energy. It is therefore instructive to look at the special case whenv = 0,
In that limit, the elastic amplitude is purely imaginary and the production

amplitude is completely real. We have in fact
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1

Tu = 2—5£J 4..?5"]: Lb [ - Los w(E.s)]

B (48)
mel 1 :;;:Zj *_. | Sfﬁ‘d(ELS) '
-rm:’ (i.g.l A- Lj € ) fm(thi,S) ‘J‘E,S) ’ (49)

. o |
S, = Sfb((‘)“w"’) [1- &oszw(B,s)]

o (Bs ! =
o"-_-’ J b [1- 5,5"“('5',;.)]. , (54)
6= 2 (&b [ 1- wsultn] o
G- "J"‘f; [1- wsal2o)

.. (53)

The meaning of these equations will be discussed in the next Section.



-16~ NAL-PUB-73/42-THY
3. DISCUSSIONS

In view of the smallness of the real part of the elastic scattering
amplitude at high energies, we shall concentrate most of our discussions

in the v = 0 limit. The opaqueness & (-B,s), defined by6

-

Tay = 25¢ J éﬂ"t £ [ /- émg'ﬂ] | (54)

is given by (48) tc be

Q(bs) = - ln[“_”"w'"] - (55)

Thus the real part of @ is always positive, which is a well known
consequence of elastic unitarity. So are Egs. (51) - (53), and we shall
therefore not discuss them any further.

In the weak interaction limit, w<<1, (55) becomes

Qs = FGofz | (wet) , (56)

which according to {16} receives additive contributions from different

’

channels. When the interaction is not weak, although differentl channels
still contribute additively to m.z, they no longer do so to 2. This is a
consequence of the continuc;us creation and absorption of multil;article
states dictated by the unitarity requirements_ in the model.

To see what unitarity does to multipar-ticle cross sections, let us first

look at Eq. (50). We can extract from it the internal multiplicify distribu-
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tion function7 Prn’ which measures the probability density of finding m

particles at impact parameter b :

2
’FM = ("]m“?:fr)/h?('g,s) . ] (57}

This expression is easy to understand in the weak coupling limit, when
{See {50) and {51)) wi(ﬁ, s)/2 is the cross lsection density for producing
m particles at impact parameter _1;, and w z(ﬁ, s) is the total inelastic
cross section dengity there.. Their ratio is therefore the probability
density, as indicated by (57).‘ What Eq. (50) goes beyond this to say

is that no matter how strong the interaction is, the ratio on the right hand
's:id:e of (5;7) is still the probability density. This simplification is a result
of the assumption that direct m -.to n-particle conversions for m>2 are
absent in the interactions.

Going beyond multipiicity distributioné, we see from (11) and {49)
that the m~particle amplitude differs from its Born term only by the
multiparticle absorption factor sinw (—fB, s)fw (TB, s}. There are two thiﬁgs
tonotice here. The effective impact .parameter ﬁ: éiven by (30),1is
determined simply by angular ﬁmmentum conservatin, It is therefore
a general feature .independent of our specific model assumptions. Secondly, '
the absorption function sinw /w here is different from Ithe absorption
function cosw in the imaginary-part of the elastic amplituéie, Eq. (48).

It is true that they both have the same general character, that they are
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bounded by 1 and tend to unity as w-0. Moreover, if 0sws n/2, they
both decrease monotonically as w increases, with sinw /w always larger
than cosw. DBut beyond w/2, both of them oscillate out of phase with each
cther.

It is also interes’fing to note that rthe real part‘of the elastic scatter-
ing amplitude has an absorption function that is the arithmetic mean of
the two: (cos w + sinw fw)/2. This can be obtained by expanding Eq. (30)
to first power in v.

Finally, let us considet in more detail the behavior of ocpaqueness.
If fm vanishes at large impa-ct parameter, so will w (Eqgs.(16) and (1 7)),
and therefoer @ {(Eq. (55)). This is to be expected. When the impact"
parameter decreases from infi'n_ity, Q inéreases and the interacl;ion
region becomes more and more opaque. If the intgraction is not strong
enough to make w exceed n/2 anywhere, 'Fheﬁ 2 is a positive monotomic
function of w, and thé interacti'on‘region gets more opaque wherever the
effective interaction is stronger. This corresponds to the usual picture
of geometxl'ical models. However, if the interaction becomes irery strong
and exceeds 1/2, then although w (_1;, s) may still be a monotonic function of
b, & (-l;, s) will develop altémate black and transparant zones bécause of
(55). Such a zebra-like structure is very interesting because it means
that in principle there is an ir.ﬁpact pararﬁeter (e. g., w = 2m) within the
overall interaction range that we can aim at where no int-eraction what-

soever occurs. At present energies, presumably the interaction is nat
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strong enough for zebra zorlles.to occur. But with the increase of
total cross section and ihereby the indication of interactions getting
stronger for larger energies, it is not completely ruled out that such
zebra zones may develop at ultra high energies.

In closing, we should also mention that if the real part of the elastic
scattering amplitude is taken into account, v#0, o.ne changes the
quantitative but not the gualitative featurés discussed above. For
example, Eq. (55) would be slightly rnodifiéd so that a completely black

interaction region (@ =«) can no longer occur.
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